Fixed Parameter Undecidability for Wang Tilesets

نویسندگان

  • Emmanuel Jeandel
  • Nicolas Rolin
چکیده

Deciding if a given set of Wang tiles admits a tiling of the plane is decidable if the number of Wang tiles (or the number of colors) is bounded, for a trivial reason, as there are only finitely many such tilesets. We prove however that the tiling problem remains undecidable if the difference between the number of tiles and the number of colors is bounded by 43. One of the main new tool is the concept of Wang bars, which are equivalently inflated Wang tiles or thin polyominoes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The periodic domino problem revisited

In this article we give a new proof of the undecidability of the periodic domino problem. The main difference with the previous proofs is that this one does not start from a proof of the undecidability of the (general) domino problem but only from the existence of an aperiodic tileset. The formalism of Wang tiles was introduced in [Wan61] to study decision procedures for the ∀∃∀ fragment of the...

متن کامل

Computing (or not) Quasi-periodicity Functions of Tilings

We know that tilesets that can tile the plane always admit a quasiperiodic tiling [4, 8], yet they hold many uncomputable properties [3, 11, 21, 25]. The quasi-periodicity function is one way to measure the regularity of a quasiperiodic tiling. We prove that the tilings by a tileset that admits only quasiperiodic tilings have a recursively (and uniformly) bounded quasi-periodicity function. Thi...

متن کامل

Transducer descriptions of DNA code properties and undecidability of antimorphic problems

This work concerns formal descriptions of DNA code properties and related (un)decidability questions. This line of research allows us to give a property as input to an algorithm, in addition to any regular language, which can then answer questions about the language and the property. Here we define DNA code properties via transducers and show that this method is strictly more expressive than th...

متن کامل

Tilings Robust to Errors

We study the error robustness of tilings of the plane. The fundamental question is the following: given a tileset, what happens if we allow a small probability of errors? Are the objects we obtain close to an error-free tiling of the plane? We prove that tilesets that produce only periodic tilings are robust to errors. For this proof, we use a hierarchical construction of islands of errors (see...

متن کامل

Fixed-point tile sets and their applicationsI

An aperiodic tile set was first constructed by R. Berger while proving the undecidability of the domino problem. It turned out that aperiodic tile sets appear in many fields, ranging from logic (the Entscheidungsproblem) to physics (quasicrystals). We present a new construction of an aperiodic tile set that is based on Kleene’s fixed-point construction instead of geometric arguments. This const...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012